
Safely Executing WebAssembly using an Encoded
Execution Interpreter

Clemens Tiedt

Abstract—The process of building certified systems is difficult
and expensive. This project examines the possibility of using the
concepts of encoded and diversified execution to create a safe
WebAssembly interpreter. It extends wain to run on embedded
platforms and import external functions. The interpreter encodes
WebAssembly programs at the instruction level to detect hard-
ware errors. Diversified execution is implemented as an additional
safety technique through a new DiversifiedRuntime type which
uses a similar interface to the existing Runtime type.

I. INTRODUCTION

Safety-critical systems have very specific and strict require-
ments for their hardware and software. This leads to high
costs and time necessary to build them. One issue in the
development of safety systems is that they are generally not
portable. Even in cases where safety software could be re-
used on new hardware, both software and hardware would
need to be certified again. A possible approach to make safety
software portable is to introduce a runtime environment or
virtual machine that the safety software is developed for.
This runtime could then be certified for different hardware
platforms. Safety software would not interact directly with the
hardware, but only with the interfaces provided by the runtime.
Therefore, the safety software would only require certification
in the context of the runtime.

Additionally, the hardware used in safety systems is com-
monly more expensive and less performant than available
consumer hardware. This is the case because safety hard-
ware needs to be more tolerant to environmental influences
such as vibrations or radiation. However, these performance
limitations impose constraints on the size and complexity
of software that can be executed on these safety systems.
Using consumer hardware would in many cases allow for
more complex programs or higher performance in existing
programs, but is not possible without strategies to mitigate
possible hardware errors.

One possible approach to use unsafe hardware for safe
systems is redundancy. This can be implemented both in
hardware and software, for example by executing multiple
instances of the software in parallel and comparing the results.
Another approach is Encoded Execution. With Encoded Exe-
cution safety functions do not work with their normal input
values, but instead use encoded input values. After a safety
function has finished execution, it is checked if the function’s
return value is decodeable with the encoding scheme used for
the input values. If this is not the case, a hardware issue must
have occurred during execution.

It should be noted that the safety guarantees provided by the
runtime are not sufficient to fulfill required standards on their
own. For example, safety applications in a railway context
would still need to fulfill the EN 50128 standard which in-
cludes development processes for the targeted Safety Integrity
Level (SIL). While the runtime can allow these applications
to run on less safe hardware, it cannot fully replace safety
mechanisms in the software and safe development processes.
Interactions of the software outside the systems are also not
protected by the safe runtime. There is, for example, no way
for the runtime to verify that data received from a network
interface is correct. The runtime can only ensure that the data
stays intact after it has been received and while it is being
processed inside the software.

This project explores the possibility of embedding tech-
niques for safe execution in a WebAssembly interpreter. This
approach promises to enable safe execution of portable soft-
ware while allowing for high performance.

II. RELATED WORK

The concept of coded processing was introduced by Forin
[1] and has been built upon by different projects since then.
The AN encoding procedure used by the safe WebAssembly
interpreter is taken from the AN encoding compiler [2].
This compiler works on LLVM intermediate representation to
replace native operations with encoded ones. This includes,
for example, arithmetic and logical operations.

int multiply_encoded(int x, int y, int A)
{

x_a = A * x;
y_a = A * y;
int result_encoded = (x_a * y_a) / A;
if (result_encoded % A == 0) {

return result_encoded / A;
} else {

eprintf("Encoding was
violated\n");

exit(1);
}

}

Listing 1: Example of manually encoded integer multiplication
in C.

AN encoding works by multiplying all operands with a
number A and replacing native operations with encoded ver-
sions. An example of this can be seen in Listing 1. The

parameters x and y are encoded by multiplying with the
additional parameter A. The encoded multiplication requires
dividing the result by A, as it would be A ·A ·x · y otherwise.
Then, the encoding is checked using the modulus. If it is zero,
the result is valid and the decoded result is returned. If the
modulus is not zero, a hardware error (such as a bit flip) must
have occurred and the program exits with an error code.

AN encoding also forms the basis of [3] which presents
the concept of diversified execution to increase the safety
provided by AN encoding. Diversified execution uses a di-
versity framework to execute safety functions twice, natively
and encoded. Comparing the results of both executions helps
to detect more errors, leading to better safety guarantees than
just AN encoding.

III. CONCEPT

To explain how we ensure the safe execution of WebAssem-
bly code, an overview of WebAssembly’s execution model
as well as limitations in the context of safety software are
provided here.

A. WebAssembly Overview
WebAssembly programs are referred to as modules. A

module can contain
• Type definitions
• Functions
• Global Variables (commonly referred to as globals)
• Memories and tables
Besides these, modules can also import and export func-

tions, globals, memories and tables.
WebAssembly functions are executed in a stack machine

which means that all instructions interact with values by
pushing them to the stack or popping them from the stack.

(func $add (param $x i32) (param $y i32)
(result i32)

local.get $x
local.get $y
i32.add

)

Listing 2: Addition function in WebAssembly text format

We give an explanation of this behaviour using the addition
function in Listing 2. In the declaration we see two 32-bit
integer parameters $x and $y. When called, the function will
then put them on the top of the stack using the local.get
instructions. Then, the i32.add instruction is executed. All
arithmetic instructions contain the type of number they operate
on (namely 32-bit or 64-bit floats or integers), since the stack
is an array of bytes and data types are only interpreted by
instructions. The i32.add instruction will pop the top 8 bytes
of data from the stack and interpret it as two 32-bit integers.
It then adds them together and pushes the result to the stack.
Instead of an explicit return from the function, the return type
is specified as (result i32) in the signature. Therefore
the caller would know that the top 4 bytes of the stack are the
return value and should be interpreted as a 32-bit integer.

B. A safe subset of WebAssembly

Within the context of safety systems, some common con-
structs and techniques cannot be used. For example, the
imprecisions and complexity of using floating point numbers
(as explored for example in [4]) may not be tolerable in certain
applications. Floating point numbers also prove to be an issue
for the AN encoding used by the safe interpreter. Due to the
definition of the modulus operator for floating point numbers
(which is given as x - (x / y).trunc() * y by the
Rust documentation) the assumption (x * y) % y == 0
does not hold if x is a floating point number. This means that
floating point values cannot be encoded and decoded naı̈vely.
While it is possible to address these issues, floating point
support adds a significant amount of complexity that would
not be used in safety applications. By default, floating point
and other instructions not useable in safety software should
therefore raise a trap when called. It would also be possible to
lock their implementations behind a cargo feature which could
be enabled to use them for systems that run in the encoded
runtime, but are not safety-critical.

IV. IMPLEMENTATION

The safe WebAssembly interpreter is based on the wain
project1 by GitHub user rhysd. wain is a WebAssembly
interpreter written in Rust with no external dependencies. To
add the capability for encoded execution, we made a number
of changes and additions.

A. Support for Embedded Systems

While wain does not use any external dependencies, it is
dependent on the Rust standard library which links against a
libc and can therefore only be used on devices running a full
operating system. However, this may not be feasible in safety
applications. However, a subset of the Rust standard library is
made available through the core and alloc libraries which can
be used in embedded contexts. Using the #![no_std] crate-
level attribute, the automatic import of the standard library can
be disabled and the core and alloc crates can be manually im-
ported. In many cases, only import paths need to be changed.
For example, the std::mem::size_of function is a re-
export of core::mem::size_of. Functions and data types
requiring dynamic memory allocation are available through the
alloc crate. This includes for example the Vec data type for
growable lists.

While most changes only required changes of import paths,
some operations are unavailable in #![no_std] contexts.
This includes many operations on floating point numbers such
as calculating the square root or rounding. On non-embedded
systems these are implemented as libm calls. Since this is
not possible on embedded systems, these functions are not
available in Rust’s core library. However, there is an effort
by the Rust language team to write a libm implementation
in pure Rust. This implementation already contains all of
the mathematical functions required for the WebAssembly

1https://github.com/rhysd/wain

https://github.com/rhysd/wain

standard, meaning that methods defined on primitve types in
the standard library can simply be replaced by the respective
libm crate functions.

B. External functions

In the WebAssembly standard, it is possible to import
functions from other WebAssembly modules or the execution
context. However, at the time of writing, this feature is not
implemented within wain. Since it is required to execute
more complex software that relies on external libraries, it was
implemented as part of this project.

There exists already code in wain to later implement call-
ing external functions, namely the Importer trait. Each
Runtime has an importer that could be used to integrate
external functions. Using the Importer::call method, ex-
ternal functions that are given access to the runtime’s stack can
be called. The only implementation of Importer in wain,
DefaultImporter, has hard-coded implementations of the
C functions memcpy, abort, putchar, and getchar.

The safe WebAssembly interpreter introduces the
EnvImporter type which is initialized with mappings of
function names to Rust function pointers and WebAssembly
function signatures. At runtime, the WebAssembly instruction
Call will then delegate to EnvImporter if the called
function is not defined within the current module.

C. Encoded Execution of WebAssembly Instructions

For encoded execution, we use the AN encoding scheme as
described by Fetzer et. al.[2]. In this encoding, all values are
multiplied by a constant A. To decode, an encoded value is
divided by A. If the remainder of an encoded value and A is
zero, the encoded value is valid.

pub trait Encodeable: Sized {
type Output;

fn encode(self, code: i32) ->
Self::Output;

}

pub trait Decodeable: Sized {
type Output;

fn decode(self, code: i32) ->
Result<Self::Output, DecodeError>;

}

Listing 3: The Encodeable and Decodeable trait definitions

In the interpreter, this is represented using two traits, En-
codeable and Decodeable. Since the number of valid encoded
values of a specific data type is smaller than the number of
values of this data type without encoding, the encoding and
decoding operations return a differently sized data type. For
example, a 32-bit integer (i32) is encoded into a 64-bit integer
(i64) and an i64 is decoded into an i32.

As established in subsection III-B, floating point arithmetic
is generally not used in safety software. Since the interpreter
presented in this project is based on an existing interpreter,
floating point arithmetic is still supported. In the future, it
may however be disabled by default. 64-bit floating point
values have to be encoded using 128-bit types which are
not part of the Rust standard or core libraries. Therefore, we
needed to use an external library that provides these types.
For this project, we decided on qd2 as it already implemented
many traits required for arithmetic as well as type conversions.
However, it is by default not no_std-compatible and misses
some methods related to converting numeric types to and
from raw byte data. We therefore extended the qd library to
be no_std-compatible by using libm functions and added
analogous conversion functions to the ones implemented on
f64.

Within the interpreter, the execution is encoded at the
instruction level. This means that values are saved without
encoding on the stack and encoded by instructions that use
them. Then, the instruction decodes the value that is written
back to the stack and raises a trap if the encoding was violated.

fn binop_trap<T, F>(&mut self, op: F) ->
Result<()>

where
T: StackAccess + LittleEndian,
F: FnOnce(T, T) -> Result<T>,

{
let c2 = self.stack.pop();
let c1 = self.stack.top();
let ret = op(c1, c2)?;
self.stack.write_top_bytes(ret);
Ok(())

}

Listing 4: Generic implementation of fallible binary operation
instructions

The execution of instructions is handled generically by the
interpreter. This implementation can be seen in Listing 4. This
method of the Runtime type takes a function as an argument
that implements a binary operation on a type that can be taken
from the stack and may fail (this is used e.g. to implement
division). The arguments to the function are taken from the
stack and the result (if a trap did not occur) is written back
on top of the stack.

Our encoded version of this method is shown in Listing 5.
It introduces more parameters and trait bounds. The type T
that the binary operation operates on must now be encodeable
into a new type U which itself can be decoded into T. The
parameters of the binary operation are taken from the stack as
values of type T and encoded. Then, the binary operation is
executed and the result decoded back from type U to T. If the
encoded value is invalid, a trap is raised.

2https://github.com/barandis/qd

https://github.com/barandis/qd

fn binop_trap_encoded<T, U, F>(&mut self,
op: F, code: i32) -> Result<()>
where

T: StackAccess + LittleEndian +
Encodeable<Output = U>,

U: StackAccess + LittleEndian +
Decodeable<Output = T>,

F: FnOnce(U, U) -> Result<U>,
{

let c2 = self.stack.pop::<T>()
.encode(code);

let c1 = self.stack.top::<T>()
.encode(code);

let ret = op(c1, c2)?
.decode(code)?;

self.stack.write_top_bytes(ret);
Ok(())

}

Listing 5: Encoded implementation of fallible binary operation
instructions

D. The Diversified Runtime

The safe WebAssembly interpreter implements diversified
execution as described in [3]. This method executes a function
twice, once as a native function (i.e. without encoding) and
in parallel as an AN-encoded function. This introduces an
additional layer of safety over just encoded execution as the
encoded result can be compared to the native result to find
discrepancies.

pub struct DiversifiedRuntime<'module,
'source, I: Importer> {

native_runtime: Runtime<'module,
'source, I>,

encoded_runtime: Runtime<'module,
'source, I>,

code: i32,
}

Listing 6: The diversified runtime type definition

In the interpreter, this is implemented through a new Diver-
sifiedRuntime type. As Listing 6 shows, this type wraps two
WebAssembly runtimes, one of which is AN-encoded using
the code field.

When a WebAssembly function is invoked in
the diversified runtime, it is first invoked in the
encoded runtime. If an error occurs there, the
DiversifiedRuntime::invoke_encoded method
(shown in Listing 7) will immediately return an error.
Otherwise, the native function is also executed and the results
are compared.

V. PERFORMANCE

For safety-critical use cases, the performance of the safe
WebAssembly interpreter is a very important consideration.

pub fn invoke_encoded(
&mut self,
name: impl AsRef<str> + Clone,
args: &[Value],

) -> Result<Option<Value>> {
let encoded_res = self

.encoded_runtime

.invoke_encoded(name.clone(),
args, self.code)?;
let native_res =

self.native_runtime.invoke(name, args)?;
if encoded_res == native_res {

Ok(encoded_res)
} else {

Err(Trap::new(
TrapReason::MismatchedResults,

0))
}

}

Listing 7: Function invocation in the diversified runtime

We measured the performance of the interpreter using a
program that manually calculates the sum from 1 to 10 000
using a for loop. The results are presented in Table I.

TABLE I
100 000 RUNS ON AMD RYZEN 5 3600, EXECUTION TIMES IN µs

Singular Runtime Diversified Runtime
Minimum 2.1 4.2
Median 2.3 4.4

Maximum 114.7 54.1

Firstly, the time difference between encoded and native
execution in a singular runtime was negligible, so Table I
only shows encoded execuation. Between the singular and
diversified runtime, the minimum and median execution times
were almost exactly doubled. The maximum execution time
varied greatly between runs of the benchmark, implying that
it is not a bottleneck in the interpreter, but more likely in the
environment (e.g. caused by scheduling).

This means that the overhead added by encoding and
diversified execution can in practice be calculated, making the
safe WebAssembly interpreter a viable option for real-time
tasks.

VI. FUTURE WORK

While the safe WebAssembly interpreter already works,
there are some remaining topics that could be addressed
by future work. This includes using a completely encoded
stack for encoded execution. In the interpreter presented here,
operands are encoded before an instruction and the decoded
value is written back to the stack. This means that the operands
are protected during the execution of the instruction, but
the remainder of the stack is not protected. Encoding the
entire stack would add additional protection, but is difficult
to implement in the existing interpreter.

Furthermore, the safety of external functions is a concern.
In general, external functions must be treated as black boxes
by the interpreter. However, external functions interact with
the WebAssembly interpreter’s stack. If the entire stack was
encoded, this constraint could be used to check for errors
even in the return values of external functions. Additionally,
a diversity framework as described in [3] could be created
for Rust functions and used for external functions which are
defined in the same program using the interpreter.

Another step would be to further examine the safety of the
WebAssembly interpreter through field tests or fault injection.
A possible candidate for field tests is the RasTA protocol
used for communication between railway hardware by DB.
This would, however, first require support for more complex
external functions to handle networking.

VII. DISCUSSION AND CONCLUSION

The growing support and ease of implementation make We-
bAssembly a highly promising tool for safety systems. As this
project shows, adding safety techniques to a WebAssembly
interpreter is possible. Such an interpreter could be used to
run safety-critical software on possibly unsafe hardware.

There are, however, still limitations to the usefulness of
WebAssembly for safety software. Firstly, while the use of
external functions is already possible, it is not very ergonomic.
Secondly, on an STM32 microcontroller with 96Kb RAM,
the interpreter runs out of memory. While safety hardware
is becoming more powerful, the overhead of the runtime may
not be acceptable on current systems.

In the future, the safe WebAssembly interpreter could be
certified. A certified interpreter could be used as a target
for safety software that only requires the safety software
itself to be certified, independently of the hardware where the
interpreter is run. At the current time, this is made significantly
more difficult by the fact that a certified Rust compiler does not
exist. However, AdaCore and Ferrous Systems are currently
working to create such a compiler, making the idea of a
certified WebAssembly interpreter possible in the future.

REFERENCES

[1] P. Forin, “Vital Coded Microprocessor Principles and Application for
Various Transit Systems,” IFAC Proceedings Volumes, vol. 23, no. 2, pp.
79–84, Sep. 1990. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1474667017526531

[2] C. Fetzer, U. Schiffel, and M. Süßkraut, “AN-Encoding Compiler: Build-
ing Safety-Critical Systems with Commodity Hardware,” in Computer
Safety, Reliability, and Security, ser. Lecture Notes in Computer Science,
B. Buth, G. Rabe, and T. Seyfarth, Eds. Berlin, Heidelberg: Springer,
2009, pp. 283–296.

[3] M. Süßkraut, A. Schmitt, and J. Kaienburg, “Safe Program Execution
with Diversified Encoding,” p. 9.

[4] B. A. Wichmann, “A Note on the Use of Floating Point in Critical
Systems,” The Computer Journal, vol. 35, no. 1, pp. 41–44, Feb. 1992.
[Online]. Available: https://doi.org/10.1093/comjnl/35.1.41

https://www.sciencedirect.com/science/article/pii/S1474667017526531
https://www.sciencedirect.com/science/article/pii/S1474667017526531
https://doi.org/10.1093/comjnl/35.1.41

	Introduction
	Related Work
	Concept
	WebAssembly Overview
	A safe subset of WebAssembly

	Implementation
	Support for Embedded Systems
	External functions
	Encoded Execution of WebAssembly Instructions
	The Diversified Runtime

	Performance
	Future Work
	Discussion and Conclusion
	References

