
Safely Executing WebAssembly using an Encoded Execution Interpreter
Trends in Operating Systems and Middleware
Winter Term 2021/22

Clemens Tiedt
Hasso-Plattner-Institut

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

2

Motivation

Building certified systems costs a lot of time and money

Hardware used in certified systems is often less performant than consumer-grade
hardware

Consumer-grade hardware is inexpensive and readily available, but (potentially)
unsafe

Need to mitigate hardware errors due to e.g. environmental effects

Common solution: Redundancy in hardware and/or software

Alternative/complementary approach: Encoded Execution

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

3

Encoded Execution (1/2)

Also known as Coded Processing, i.e. using software codes to detect errors at runtime

Related works:

Forin, 1989: Vital Coded Microprocessor Principles and Application for Various
Transit Systems
Fetzer et. al., 2009: AN-Encoding Compiler: Building Safety-Critical Systems with
Commodity Hardware
Süßkraut et. al., 2015: Safe Program Execution with Diversified Encoding

Determine encoding/decoding procedure

Encode all inputs when calling a function

Execute function using encoded operations

Is function return value decodeable?→ no hardware errors occurred

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

4

Encoded Execution (2/2)

Extension: Diversified execution

Run multiple program instances with different encodings in parallel

Compare instance states e.g. at every function entry/exit using checksums

Additional safety from software-side redundancy

Diversified code can be generated by Diversity Framework, in this case modified
WebAssembly interpreter

Native Input Values Native Functional Code

Native Internal State

Native Output Values

Encoded Input Values Encoded Functional Code

Encoded Internal State

Encoded Output Values

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

5

Approach

program
.c

program
.rs

program
.cpp

program

.ada

program

SCADE

compile
.wasm

Interpreter

execute code,
detect errors

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

6

WebAssembly Example (1/2)

int add(int a, int b) {

return a + b;

}

Compile using e.g. clang with target
wasm32

Example shows a library, executable
would have _start function as entry
point

Interpreter is a Rust library that can be
embedded in other code

(module

(table 0 anyfunc)

(memory $0 1)

(export "memory" (memory $0))

(export "add" (func $add))

(func $add (; 0 ;) (param $0 i32) (param $1 i32) (result i32)

(i32.add

(get_local $1)

(get_local $0)

)

)

)

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

7

WebAssembly Example (2/2)

let source = include_bytes!("add.wasm");

let tree = parser::parse(source.as_slice()).expect("Could not parse source");

let mut runtime = DiversifiedRuntime::instantiate(

&tree.module,

DefaultImporter::new(),

DefaultImporter::new(),

A,

).expect("Failed to instantiate runtime");

let ret = runtime.invoke_encoded("add", &[Value::I32(4), Value::I32(2)])

.expect("A trap occurred during execution")

.unwrap();

assert_eq!(ret, Value::I32(6));

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

8

The WebAssembly Interpreter

This project is based on wain (WebAssembly Interpreter) by GitHub user rhysd

Written in pure Rust (a systems programming language that ensures memory safety
through a concept of ownership)

No external dependencies

No unsafe code

Some modifications necessary before implementing Encoded Execution

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

9

Compatibility with embedded platforms

Rust’s standard library links against libc and cannot be used on embedded platforms

Most components from standard library (e.g. dynamically allocating data structures)
can be replaced by core and alloc crates

Mathematical operations in standard library use system libm, but can be replaced
with pure Rust libm implementation

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

10

Using external functions

Not yet implemented in wain, but prerequisites exist

We can instantiate a Runtime with our own implementor of the Importer trait that
can delegate WebAssembly calls to Rust functions

wasm_fn! macro to ergonomically write WASM functions

Still not perfect: Order of arguments matters, WebAssembly exeuction model
operates only on numeric types

Listing: Macro invocation and expansion

wasm_fn! (square , | v : i32 | => i32 { v * v }) ;

fn square (stack : &mut Stack , _memory : &mut Memory) {
let v = stack . pop : : < i32 > () ;
let re t = { v * v } ;
stack . push : : < i32 >(re t) ;

}

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

11

Encoding of WebAssembly values

pub t ra i t Encodeable : Sized {
type Output ;

fn encode (self , code : i32) => Self : : Output ;
}

pub t ra i t Decodeable : Sized {
type Output ;

fn decode (self , code : i32) => Result<Self : : Output , DecodeError > ;
}

Our interpreter uses AN Encoding

To encode value x with code c: xc = x · c
To decode encoded value xc: x = xc/c

Check validity by checking modulus

WebAssembly values implement Encodeable so that a n-bit type is encoded as 2n-bit
(and encoded output types implement Decodeable)

External library for 128 bit floating point numbers required

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

12

Encoded execution of WebAssembly instructions

fn binop_trap_encoded <T , U , F>(&mut self , op : F , code : i32) => Result < ()>
where

T : StackAccess + L i t t l eEnd i an + Encodeable<Output = U> ,
U : StackAccess + L i t t l eEnd i an + Decodeable<Output = T> ,
F : FnOnce (U , U) => Result<U> ,

{
let c2 = self . stack . pop : : <T> () . encode (code) ;
let c1 = self . stack . top : : <T> () . encode (code) ;
let re t = op (c1 , c2) ? . decode (code) ? ;
self . stack . wr i te_top_bytes (re t) ;
Ok (())

}

Executes function op on the two top values on the stack (used e.g. to implement the
i32.add instruction)

These values are encoded before op is called

If encoding is violated, a Trap is raised

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

13

Diversified Execution

Native Input Values Native Functional Code

Native Internal State

Native Output Values

Encoded Input Values Encoded Functional Code

Encoded Internal State

Encoded Output Values

pub struct Divers i f iedRunt ime < 'module , ' source , I : Importer > {
nat ive_runt ime : Runtime < 'module , ' source , I > ,
encoded_runtime : Runtime < 'module , ' source , I > ,
code : i32 ,

}

Additional layer of safety by executing each function twice, native and encoded

Compare if results after decoding are equal, raise Trap otherwise

Could be parallelized in contexts where multithreading is available

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

14

Benchmark Results

Benchmark application: Sum from 1 to 10 000, no optimizations

Minimum and median execution times of diversified runtime are consistently twice as
long as singular execution

Maximum execution time fluctuates between 50µs and 150µs for both

Ca. 150Kb footprint in a STM32 binary, similar on x86

Singular Runtime Diversified Runtime
Minimum 2.1 4.2
Median 2.3 4.4

Maximum 114.7 54.1

Table: 100 000 runs on AMD Ryzen 5 3600, Execution times in µs

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

15

Future Work: Using an encoded stack

fn binop_trap <T , U , F>(&mut self , op : F , code : i32) => Result <() >
where

T : StackAccess + L i t t l eEnd i an + Decodeable<Output = U> ,
U : StackAccess + L i t t l eEnd i an + Encodeable<Output = T> ,
F : FnOnce (U , U) => Result<U> ,

{
let c2 = self . stack . pop_decode : : <T , U>(code) ? ;
let c1 = self . stack . top_decode : : <T , U>(code) ? ;
let re t = op (c1 , c2) ? . encode (code) ;
self . stack . wr i te_top_bytes (re t) ;
Ok (())

}

Encode entire stack, only decode for instructions that cannot work on encoded values

Could provide more safety, but more error-prone during development (e.g. global
variables are not written using Stack::push, but written at a specific address on the
stack)

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

16

Future Work: Making safe external function calls

In general: No assumptions about external functions possible

However, external functions in the WebAssembly interpreter have to interact with
the stack

If an error occurs, it is only critical if it affects the stack→ could be caught by
encoding the stack

Native Rust functions could additionally be encoded using compile-time tools (e.g.
procedural macros)

Safely Executing
WebAssembly using
an Encoded Execution
Interpreter

Clemens Tiedt

17

Conclusions and Future Work

Encoded execution of WebAssembly programs is generally viable

Overhead of encoding is negligible
Overhead of diversified execution is calculable

Potential to only require certification for programs and allow them to run on different
hardware platforms via the WebAssembly runtime (AdaCore and Ferrous Systems are
working on a certified Rust compiler)

More work is necessary to support programs that depend on external functions, e.g.
operating system functionality

Field tests/fault injection could be used to further evaluate safety and performance

